(a) J/m²sK

SUBJECT CODE NO: - 2014 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y Sem. I

Examination March/April-2022 (To Be Held In June/July-2022)

Physics Paper-II

Heat and Thermodynamics [Time: 1:53 Hours] [Max.Marks:50] Please check whether you have got the right question paper. N.B. Attempt all questions. Use of logarithm table & electronic Pocket Calculator is allowed. a) Explain, in detail the flow of heat along the wall of a cylindrical tube. Q.110 b) Derive an expression for thermal conductivity of a gas & prove that 10 $K \propto \sqrt{T}$, where K = coefficient of the thermal conductivity of a gas T = absolute Temperature.c) What is an adiabatic process? Derive an expression for work done during an adiabatic 10 d) Derive the Clausius - Clapeyron's latent heat equation from maxwell's thermodynamical 10 relation and explain the effect of pressure on (i) boiling point of liquid and (ii) melting point of solid. Q.2 a) Write a Short note on transference of heat. b) Two thin concentric spherical shells of radii 4cm & 8cm respectively have their annular 10 cavity filled with Charcoal powder. When energy is supplied at the rate of 10.5 watt to a heater at the centre, a temperature difference of 60°C is set up between the shells find the thermal conductivity of Charcoal (J = 4.2 Joule/cal). c) State the Second law of thermodynamics with the help of Kelvin and Clausius statement. d) Find the efficiency of Carnot's enging working between 127°C and 27°C. It absorbs 80 Cals of heat. How much heat is rejected? a) Define mean free path, and obtain expression for mean free path. 05 b) The viscosity of a gas is 25×10^4 gm/m sec. If the free path of the gas molecule is 2×10^4 gm/m sec. 05 10-8 m & its density is 1 kg/m³, then calculate the R.M.S. velocity of the gas molecule. c) Define entropy. Explain change of entropy is independent of path. 05 d) Calculate the change in temperature of boiling water, when the pressure is increased by 05 3.6×10^4 dyne/cm². The normal boiling point of water at atmospheric pressure is 100° C. Latent heat of steam = 537 cal/g & specific volume of steam = 1672 cm^3 (1cal = $4.2 \times$ 107) Q.3 Multiple choice questions. 10 1. The S.I. unit of thermal conductivity is

(b) Js/mK (c) Jk/ms (d) J/msK 2. If the density of material 'Q' and specific heat is 'C' then its thermal diffusivity is (a) $h = C/\rho K$ (b) $h = K/\varrho C$ (c) $h = K\varrho/C$ (d) $h = \rho C/K$ 3. The Critical Constant of Pressure (Pc) (a) $a/27b^2$ (b) $27b^2/a$ (c) a/27b(d) 27b/a4. The mean free path of gas raises with absolute temperature (T) as, (a) T (b) T² (c) 1/T (d) T³5. In Vander Waal's equation for real gas, Volume correction is (a) a/V^2 (b) a/V (c) b (d) V/b 6. In Carnot's cycle, the first step is (a) Isothermal expansion (b) Adiabatic expansion (c) Isothermal compression (d) Adiabatic compression. 7. A Carnot engine is operating between 100°C and 50°C. Its efficiency will be (a) 15.2% (b) 13.4% (c) 25% (d) 74.4%

8. The efficiency of the engine is

(a) always less than 1

(c) equal to 1

(d) Both a & b

(b) always greater than 1

SUBJECT CODE NO: - 2014 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. F.Y Sem. I

Examination March/April-2022 (To Be Held In June/July-2022) **Physics Paper-II**

	Heat and Thermodynamics	
[Time: 1:5	3 Hours] [Max.Marks:5	0]
N.B.	Please check whether you have got the right question paper. i) Attempt all questions. ii) Use of logarithm table & electronic Pocket Calculator is allowed.	
Q.1	 a) Explain, in detail the flow of heat along the wall of a cylindrical tube. b) Derive an expression for thermal conductivity of a gas & prove that K √T, where K = coefficient of the thermal conductivity of a gas T = absolute Temperature. OR c) What is an adiabatic process? Derive an expression for work done during an adiabatic 10 to 10)
	 d) Derive the Clausius - Clapeyron's latent heat equation from maxwell's thermodynamical 10 relation and explain the effect of pressure on (i) boiling point of liquid and (ii) melting point of solid.)
Q.2	 a) Write a Short note on transference of heat. b) Two thin concentric spherical shells of radii 4cm & 8cm respectively have their annular cavity filled with Charcoal powder. When energy is supplied at the rate of 10.5 watt to a heater at the centre, a temperature difference of 60°C is set up between the shells find the thermal conductivity of Charcoal (J = 4.2 Joule/cal). c) State the Second law of thermodynamics with the help of Kelvin and Clausius statement. d) Find the efficiency of Carnot's enging working between 127°C and 27°C. It absorbs 80 Cals of heat. How much heat is rejected? 	
	a) Define mean free path, and obtain expression for mean free path. b) The viscosity of a gas is 25 × 10 ⁻⁴ gm/m sec. If the free path of the gas molecule is 2 × 10 ⁻⁸ m & its density is 1 kg/m ³ , then calculate the R.M.S. velocity of the gas molecule. c) Define entropy. Explain change of entropy is independent of path. d) Calculate the change in temperature of boiling water, when the pressure is increased by 3.6 × 10 ⁴ dyne/cm ² . The normal boiling point of water at atmospheric pressure is 100°C. Latent heat of steam = 537 cal/g & specific volume of steam = 1672 cm ³ (1cal = 4.2 × 10 ⁷)	5
Q.3	Multiple choice questions. 1. The S.I. unit of thermal conductivity is (a) J/m ² sK	0

- (b) Js/mK
- (c) Jk/ms
- (d) J/msK
- 2. If the density of material 'Q' and specific heat is 'C' then its thermal diffusivity is
- (a) $h = C/\varrho K$
- (b) $h = K/\varrho C$
- (c) $h = K\varrho/C$
- (d) $h = \varrho C/K$
- 3. The Critical Constant of Pressure (Pc)
- (a) $a/27b^2$
- (b) $27b^2/a$
- (c) a/27b
- (d) 27b/a
- 4. The mean free path of gas raises with absolute temperature (T) as,
- (a) T
- (b) T²
- (c) 1/T
- (d) T³
- 5. In Vander Waal's equation for real gas, Volume correction is
- (a) a/V^2
- (b) a/V
- (c) b
- (d) V/b
- 6. In Carnot's cycle, the first step is
- (a) Isothermal expansion
- (b) Adiabatic expansion
- (c) Isothermal compression
- (d) Adiabatic compression.
- 7. A Carnot engine is operating between 100°C and 50°C. Its efficiency will be
- (a) 15.2%
- (b) 13.4%
- (c) 25%
- (d) 74.4%
- 8. The efficiency of the engine is
- (a) always less than 1
- (b) always greater than 1
- (c) equal to 1
- (d) Both a & b

- 9. The entropy of a system in an irreversible process.
- (a) increases
- (b) decreases
- (c) Remain constant
- (d) Remains zero
- 10. When 5kg of water heated at 100°C is converted into Steam at same temperature. The change in entropy is
- (a) 1865 cal/k
- (b) 13 cal/k
- (c) 1665 cal/k
- (d) 7240 cal/k

SUBJECT CODE NO:- 2025 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. F.Y (Sem-II)

Examination March/April-2022 (To Be Held In June/July-2022)
Physics Paper- IV
Geometrical & Physical Optics

[Time	:1:53 Но	rs] [Max. Marks:5	50]
	N	Please check whether you have got the right question paper. 3. i) Attempt all questions.	
		ii) Use of logarithmic table and Electronic pocket calculator is allowed.	
Q.1		Explain with the help of neat diagram the construction and working of Huygen's eyepiece. 10	0
	b)	Describe the principle, construction and working of Michelson's interferometer. OR)
1	c)	Derive an expression for resolving power of prism.)
	d)	Explain in detail Lorentz half shade polarimeter.)
Q.2	a)	Write a short note on cardinal points of an optical system.	5
	b)	The focal length of lenses of Ramsden's eyepiece in 8 cm. Determine the equivalent focal	
		ength. (Given $f_1 = f_2 = 8 \text{ cm}$).	
		Explain resolving power of grating.	5
	d)	Deduce the missing orders for a double slit fraunhofer diffraction pattern if the slit width	
		are 0.16mm and they are 0.8mm apart. OR	5
	a)	Write a short note on types of fringes of Michelson's interferometer.	5
		in a Newton's rings experiment, the diameter of 10th dark ring due to wavelength 6000 Å in	
		air is 0.5cm. Find the radius of curvature of the lens.	
		Explain Huygen's theory of double refraction in uniaxial crystal.	5
	d)	Find the specific rotation of given sample of sugar solution if the plane of polarization is urned through 13.2°, the length of the tube containing 10% sugar solution in 20cm.	5
Q.3	Multip	Choice Question	0
0			
1000	(1)	n lens system the numbers of Cardinal points are	
6 S. S.		a) 2 b) 4 c) 6 d) 8	
3,000	2)	n Huygen's eyepiece focal length is 5 cm then distance between two lenses iscm.	
	3100 (1)	a) 5 b) 10 c) 15 d) 20	
	3)	The soap film appears colorful due to	
3000	20 20	(a) Interference (b) Diffraction	
200	Carried Co.	(c) Reflection (d) Refraction	
70 1 100 670	CONTRACTOR OF THE PARTY OF THE	ALTERNATION NO. AND A VINCE	

SUBJECT CODE NO:- 2026 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. F.Y (Sem-II)

Examination March/April-2022 (To Be Held In June/July-2022) Physics Paper-V

Electricity & Magnetism

#			Electrici	ty & Magnetism	501
	[Time:	1:53 H	ours]	[Max. Marks	3:50]
	N.B.		i) Attempt all quest	have got the right question paper.	
	N.D.		ii) Use of logarithm	ic table and Electronic pocket calculator is allowed.	
	0.1	۵)	State and prove Gauss's divergence	theorem.	10
	Q.1	b)	Derive the expression for potential	and field due to electric dipole. OR	10
		a)	State and prove Amper's law.		10
		b)	Derive the expression for decay of	current in LR Circuit.	10
	0.2	-1	Define and explain scalar triple pro	duct	05
	Q.2	a)	Define and explain scalar triple pro	i itisa santar	05
		b)	Prove that $\nabla \cdot (\nabla \times \vec{A}) = 0$ where A	is position vector.	05
		c)	State and explain Biot-Savart law.	C10 Constraight conductor corruing current	05
		d)	Find the magnetic Induction at dist of 500 mA ($\mu_0 = 4\Pi \times 10^{-7}$ S. l. u	ance of 10 cm from straight conductor carrying current nit.	
				OR	05
		a) b)	The force between the two charges	$\sin 4 \times 10^9 N$ when the two charges of 12nc and 10nc.	05
			Calculate the distance between the	m.	05
		c)	Write a note on time constant of cl	narging condenser through resistance.	
		d)	A capacitor of capacitance 0.1 μf in 10mΩ. Find the time potential will	s first charged and then discharge through a resistance of take to fall half of it's original value.	1
-	Q.3	Multi	inle Choice Ouestion	E STATE OF THE STA	10
	Q.5	1	. For current carrying solenoid the	Amper law can be written as	
		Vol.	(a) ∮ B. dl . μ ₀ IN	(b) $\oint B \cdot dl = \mu_0 I$	
			(c) $\oint B \cdot dl = \mu_0$	$(d) \oint B. dl = I/\mu_0$	
		2	. ∇.(AB)=		
			(a) $(\nabla.A)(\nabla.B)$	(b) $\nabla A + \nabla B$	
			(c) ∇^2 AB	(d) $B\nabla A + A\nabla B$	
		3	a) Fluid is in compressible	d is zero then.	
			b) V is solenoidal vector		
			c) There is no net flow of fluid.d) All the above		

4.	The potential difference of 2 volts is applied between two metallic plates separated by 2 cn the Electric field is					
	a) 50 V/m	b) 100 V/m	c) 200 V/m	d) 20 V/m		
5.	The electric poten	tial due to point char				
	a) r	b) r^{-1}	c) r^{-2}	d) r^2		
6.	Electric Intensity	is				
	a) Scalar	b) Tensor	c) Vector	d) Both a and b		
7.	The magnetic ind cm from it is	uction due to straight	conductor carrying c	urrent of 200mA at a point 2		
	a) 2×10^{-6} T	b) 2×10^{-7} T	c) 2×10^{-5} T	d) 2×10^{-4} T		
8.	The time constant	t of LR Circuit for L=	50H and R=5Ω is			
	a) 100 sec	b) 150 sec	c) 5 sec	d) 10 sec		
9.	Decay of current (a) $I = I_0 e^{-Rt/L}$ (c) $I = I_0 e^{-Lt/R}$	in LR Circuit is given (b) (d)	I by $I = I_0 e^{Rt/L}$ $I = I_0 e^{-Lt/R}$			
10		$\vec{\beta}$ then the angle between				
	a) Π/4	b) Π/2 c) 3Π/2 d) 3Π/4	ł		

SUBJECT CODE NO:- 2034 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. S.Y (Sem-IV)

Examination March/April-2022 (To Be Held In June/July-2022)

Physics Paper- XII Solid State Physics

-		Solid	State Physics	Y.
[Time:	01:53 Ho	urs]	[Max. Marks	s: 5
		Please check whether vo	u have got the right question paper.	
N.B		1) Attempt all questions	**************************************	
			ble and electronic pocket calculator is allowed.	
6 1	a)	What are Miller indices? Write t with example.	he procedure for finding Miller indices \mho a given plane	10
	b)	Explain in detail the formation of each.	f covalent bond and metallic bond. Give properties of	10
			OR	
	a)	Using Einstein model, derive the	expression for the specific heat of a solid.	10
	b)	State Hall Effect. Derive an expr	ression for Hall Coefficient.	10
Q.2	a)	Obtain an expression for interpla		05
	b)	In a tetragonal lattice a=b=0.25n (111) planes.	m and c=0.18nm. Deduce the lattice spacing between	05
	c)		bye theory of lattice heat capacity in solids?	05
			vn solid is 1500 K. Compute the highest vibrational	05
			OR	
	a)	Define cohesive energy and dete	rmine its value for crystals of inert gases.	05
_	(b)	If the potential energy functions	is expressed as $U_{(r)} = \frac{-\alpha}{\epsilon} + \frac{\beta}{\epsilon^2}$	05
		경기 사용 내용 사용하게 되면 하게 되었다. 그 경기 내가 있어 내가 있는 것이 없는 것이 없는 것이 없는 것이 없어 없어 없다.	tance r_0 for which the potential energy is minimum is	
03	c)	Write short note on thermal cond	fuctivity.	05
	d)	Find the Fermi energy in copper	on the assumption that each copper atom contributed gas. The density of copper is $8.94 \times 10^3 \ kg/m^3$ and its	05
Q.3	Attemp	pt all questions.		10
C. G. S.	1)	In tetragonal crystal system the a	ingle	
1. J. J.	a)	$\alpha = 90 \neq \beta \neq \gamma$	b) $\beta = 90 \neq \alpha \neq \gamma$	
1000	(c)	$\alpha = \beta = \gamma = 90$	d) $\alpha = \beta = \gamma \neq 90^{\circ}$	

10

Total No. of Printed Pages: 02

SUBJECT CODE NO:- 2022 FACULTY OF SCIENCE & TECHNOLOGY

ACULTY OF SCIENCE & TECHNOLOGY B.Sc. S.Y Sem-III

Examination March/April-2022 (To be held in June/July-2022)

Physics -VIII

Modern and Nuclear Physics

[Time: 1:53	3 Hours]	rks:50
N.B	Please check whether you have got the right question paper. i. Attempt all questions. ii. Use all logarithmic table and electronic pocket calculator is allowed.	
Q.1 a)	Explain Richardson and Compton experiment to study the relation between velocity of photoelectrons and frequency of light.	10
b)	Discuss in detail Bragg's X-ray spectrometer.	10
	OR Explain briefly liquid drop model of nucleus. Discuss principal, construction and working of Linear Accelerator.	10 10
Q.2 a)	Write a short note on Binding Energy.	05
b)	Calculate work function of sodium in electron volts if the three shold wavelength is $6800A^0$ and value of h is $6.625 \times 10^{-34} Js$	05
c)	Explain photo-emissive cell.	05
d)	Calculate the binding energy of α -particle and express result in both MeV and joule. Given that mass of proton is 1.0072 76 u and mass of neutron is 1.008665.u	05
-	OR Discuss absorption of x-rays.	05
b)	The interplaner spacing for a given (h,k,l) planes of a crystal is 2.82 A^0 . It is found that the first order reflection occurs at an angle of 10^0 . What is the wavelength of x-rays?	05
c)	Describe synchrocyclotron	05
d)	A cyclotron in which the flux density is 1.4 wb/m² is employed to accelerate protons. How	05

1

BBCBFEDF9B0F63AF6D52C629BD949FB4

rapidly should the electric field between the dees are reversed? Given that mass of the proton is 1.67×10^{-27} kg and the charge is 1.6×10^{-19} C Q.3 Multiple choice questions 1) The photo-multiplier cell based on the principle of ----a) Secondary emission b) Absorbtion d) None of these c) Primary emission 2) The process of emission of electrons from emitter plate, when elluminated by light of suitable wave length is called as ----a) Pieze electric effect b) Photo electric effect c) Thermionic emission d) None of above 3) Who discovered X-rays? a) Newton b) Einstien c) Roentgen d) Planck 4) What is unit of x-rays intensity? a) Candela b) Coulomb c) Roentgen d) None of these 5) One (1) a.m.u is equal to b) $1.66 \times 10^{-20} kg$ a) $1.66 \times 10^{-25} kg$ c) $1.66 \times 10^{-27} kg$ d) None of above 6) Which of the following force is strong force? a) Gravitational b) Nuclear c) Electrostatic d) Magnetic 7) The energy which an electron aquires when accelerated through a potential difference of 1 volt is known as b) 1 erg a) I electron volt c) I joule d) 1 watt 8) A cyclotron uses two dees while there is only ------ dee in a synchrocyclotron b) Three a) Two d) Four c) One 9) The minimum energy required to remove an electron with zero velocity is b) Binding energy a) Stopping potential c) Work function d) None of above 10) Which is Bragg's law? a) $n\lambda = 2\sin\theta$ b) $n\lambda = \sin \theta$

2

d) $\frac{\lambda}{2} = d \sin^2 \theta$

c) $n\lambda = 2d \sin \theta$

SUBJECT CODE NO:- 2022 FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. S.Y Sem-III

Examination March/April-2022 (To be held in June/July-2022) Physics -VIII

Modern and Nuclear Physics

[Time	: 1:53 Hours] [Max. Mar	ks:50
N.B	Please check whether you have got the right question paper. i. Attempt all questions. ii. Use all logarithmic table and electronic pocket calculator is allowed.	STORY Start
Q .1	 Explain Richardson and Compton experiment to study the relation between velocity of photoelectrons and frequency of light. 	10
	b) Discuss in detail Bragg's X-ray spectrometer.	10
	OR a) Explain briefly liquid drop model of nucleus. b) Discuss principal, construction and working of Linear Accelerator.	10 10
Q.2	a) Write a short note on Binding Energy.	05
	b) Calculate work function of sodium in electron volts if the three shold wavelength is $6800A^0$ and value of h is $6.625 \times 10^{-34} Js$	05
	c) Explain photo-emissive cell.	05
SERVE	d) Calculate the binding energy of α -particle and express result in both MeV and joule. Given that mass of proton is 1.0072 76 u and mass of neutron is 1.008665.u	05
38.00.6	OR	05
	a) Discuss absorption of x-rays.	
	b) The interplaner spacing for a given (h,k,l) planes of a crystal is 2.82 A^0 . It is found that the first order reflection occurs at an angle of 10^0 . What is the wavelength of x-rays?	05
318 31 C	c) Describe synchrocyclotron	05
82.04.79.12 81.54.19.18	d) A cyclotron in which the flux density is 1.4 wb/m² is employed to accelerate protons. How	05
1 1 Cm	NO NO NO SO DE EVON	

SUBJECT CODE NO:- 2034 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. S.Y (Sem-IV)

Examination March/April-2022 (To Be Held In June/July-2022)

Physics Paper- XII Solid State Physics

[Time: 01:53 Hours]

[Max. Marks: 50]

10

N.B

Please check whether you have got the right question paper.

1) Attempt all questions.

- 2) Use of logarithmic table and electronic pocket calculator is allowed.
- Q.1 a) What are Miller indices? Write the procedure for finding Miller indices \(\mathcal{U}\) a given plane 10 with example.
 - b) Explain in detail the formation of covalent bond and metallic bond. Give properties of 10 each.

- a) Using Einstein model, derive the expression for the specific heat of a solid. 10
- b) State Hall Effect. Derive an expression for Hall Coefficient. 10
- Q.2 a) Obtain an expression for interplanner spacing in cubic crystal.
 - b) In a tetragonal lattice a=b=0.25nm and c=0.18nm. Deduce the lattice spacing between 05 (111) planes.
 - c) What are the assumptions of Debye theory of lattice heat capacity in solids? 05 d) Debye temperature of an unknown solid is 1500 K. Compute the highest vibrational 05
 - frequency of the solid at 30K.
 - a) Define cohesive energy and determine its value for crystals of inert gases. 05 05
 - b) If the potential energy functions is expressed as $U_{(r)} = \frac{-\alpha}{r^6} + \frac{\beta}{r^{12}}$ Show that the intermolecular distance r_0 for which the potential energy is minimum is given by $\left(\frac{2\beta}{\alpha}\right)^{1/6}$
 - c) Write short note on thermal conductivity. d) Find the Fermi energy in copper on the assumption that each copper atom contributed
 - one free electron to the electron gas. The density of copper is $8.94 \times 10^3 \, kg/m^3$ and its atomic mass is 63.5 µ.
- 0.3 Attempt all questions.

b) $\beta = 90 \neq \alpha \neq \gamma$

a) $\alpha = 90 \neq \beta \neq \gamma$ c) $\alpha = \beta = \gamma = 90$

1) In tetragonal crystal system the angle

d) $\alpha = \beta = \gamma \neq 90^{\circ}$

- 2) Crystal structure of material is
- a) A combination of points and space
- b) A combination of lattice and a motif
- c) Dependent on motif
- d) Determined by arrangement of points in space.
- 3) A primitive unit cell
- a) Always has one formula unit
- b) Has at least one formula unit
- c) Has at least one formula unit but never more than two
- d) Always has more than two formula
- 4) Metalic bonding has following attributes
- a) Electrons are delocalized
- b) Free electrons from clouds
- c) Bonds are non-directional in nature
- d) All above
- 5) The bond energy magnitudes in ascending order can be expressed as
 - a) Vander waals → Hydrogen bond → Metalic bond → Ionic bond
 - b) Hydrogen bond → Vander waals → Metalic bond → Ionic bond
 - c) Vander waals bond \rightarrow Hydrogen bond \rightarrow Jonic bond \rightarrow Metalic bond
 - d) Hydrogen bond → Vander waals bond → Ionic bond → Metalic bond
- 6) The expression $C_V = 3R$ represents
- a) Debye's law

b) Planck's law

c) Dulong and petit's law

- d) Wien's law
- 7) Which of the following is Debye temperature?
- a) $\Theta_D = \frac{\hbar w_D}{\kappa_B}$

- 8) At low temperature, C_v of solid is proportional to
 - a) T^2 b) T^3 c) T^6 d) $T^{1/2}$
- 9) Wideman and Franz ratio is $\frac{K}{L}$ =

a)
$$3\left(\frac{\kappa_B}{e}\right)^2 T$$
 b) $2\left(\frac{\kappa_B}{e}\right)^2 T$ c) $4\left(\frac{\kappa_B}{e}\right)^2 T$ d) $\left(\frac{\kappa_B}{e}\right) T$

- 10) The Hall coefficient R_H is a) $R_H = ne$ b) $R_H = n + e$ c) $R_H = \frac{1}{ne}$ d) $R_H = \frac{ne}{2}$

SUBJECT CODE NO:- 2029

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. T.Y. (Sem-VI)

Examination March/April-2022 (To Be Held In June/July-2022)

Physics Paper-XIX

(Atomic, Molecular Physics & Laser)

		(Aton	nic, Molecular Physics & Laser)	
[Time:	: 1:53 Hours]		[Max. Marl	cs:50]
	N.B.		hether you have got the right question paper. Il questions.	
			he diagram whenever necessary.	
Q.1	a) Discuss	the merits and lin	nitations of Bohr's theory.	10
	b) What is	Zeeman shift? Ob	otain an expression for Zeeman shift. OR	10
		the applications of physics and chem	of Raman effect for the study of nature of liquid, crystal physics, iical effect.	10
			and working of CO ₂ laser.	10
Q.2	a) i) What	are drawbacks of	Rutherford's atom model?	05
	ii) Calc		nber, wavelength and frequency of H_{α} line of Hydrogen.	05
	b) i) What	are stokes and an	ti-stokes lines in Raman Spectrum.	05
	ii) The	exciting line in an	experiment with Raman effect is 5460 Å. If the stoke line ate the wavelength of anti-stoke line. OR	05
	ii) Calc in norm	ulate the waveleng	al study of stark effect. gth separation between two component lines which are observed The magnetic field used in 0.5 Wb/m ³ . [Specify charge =	05 05
-		uss the properties of		05
	ii) Find		ation inversion of two states in He-Ne laser that produces a light	05
Q.3	Choose the cor	rect answer		10
	1. Nuclea	r Model of atom w	vas proposed by –	
			(b) Niels Bohr	
		. Thomson	(d) Sommerfield	
	2. If the n (a) do		reduced to half, the Rydberg constant becomes-	
			(d) unchange	
	(c) on	e fourth	(a) unchange	

	a level of given t splits into –
(a) l levels	(b) 2 <i>l</i> levels
(c) $(2 l + 1)$ levels	(d) $(2 l - 1)$ levels
4coupling scheme	c) both a & b d) none of these
4coupling scheme a) L-S b) J – J	c) both a & b d) none of these
5. In Raman effect, stoke's	lines are observed when
(a) $\Delta \theta$ is positive	(b) $\Delta \theta$ is negative
(c) $\Delta \theta$ is zero	(d) none of these
6. The selection rule for Ra	man scattering is –
(a) $\Delta J = \pm 1$	$(b) \Delta J = \pm 2$
(c) $\Delta J = \pm 3$	(d) $\Delta J = \pm 4$
7. The active centres in Rub	by lasers are
(a) aluminum ions	(b) Chromium ions
(c) both a & b	(d) None of these
8. A laser beam is a –	
(a) Coherent	(b) highly directional
(c) monochromatic	(d) all of these
9. In Rayleigh's scattering,	the scattered light has Frequency.
(a) Same	(b) different
(c) less	(d) grater
10. The value of spin quantum	m number of an electron in hydrogen atom is
a) -1/2 b) +1/2	c) 1 d) 0

10

10

Total No. of Printed Pages:2

SUBJECT CODE NO:- 2030 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. T.Y (Sem-VI)

Examination March/April-2022 (To Be Held In June/July-2022)

Physics Paper-XX (Non -Conventional Energy Sources and Optical Fiber) [Time:1:53 Hours] [Max. Marks:50] Please check whether you have got the right question paper. N.B. i) Solve all questions. ii) Draw the diagram wherever necessary. 0.1 a) Explain Biomass energy. Give its advantages and disadvantages. b) Explain in details the I-V characteristics of solar cell and define fill Factor. a) Describe -1) A Multimode step Index Fiber 10 2) Monomode step Index Fiber b) Describe -1) External CVD 10 2) Axial Vapour Deposition Q.2 a) 1) Write a short note on Monoblade Horizontal axis Wind turbine (Monoblade HAWT) 2) Calculate the power of wind turbine whose wind power density is 740 w/m² and swept 05 area 320 m². b) 1) Explain 'Halide Fiber', and its characteristics. 2) A step index fiber has a numerical aperature 0.17 core diameter of 100 µm. What are the 05 number of modes at operating wavelength $0.85 \mu m$. OR a) 1) State the advantages and disadvantages of storage batteries. 2) A solar cell having fill factor 0.71 gives 0.65 voltage at maximum power point at STC, 05 the cell gives 3.5 A short circuit current and 0.81 V open circuit voltage. What is the current at maximum power point of solar cell? b) 1) Explain the standard test to be performed during the fiber cable testing. 05 2) A Fiber with cladding radius of 200 µm is bent along the curve of radius 4 cm. 05 Compute the resulting strain on the fiber. Choose the correct answer 10 1. The power available in winds flowing over the earth surface is estimated as

(a) 1.6 × 107 MW

(b) 1.6×10^{17} MW

(c) 1.6×10^{10} MW

(d) None of these

2. Twin blade horizontal axis wind turbine generator unit is ofa) 1.5 MW, 2.5 MW, 3.5 MW b) 0.5 MW, 1.5 MW, 2.5 MW 4 1 MW, 2 MW, 3 MW d) None of these 3. Lead acid battery are commonly used as source of energy for SLL (a) Main (b) Stable (c) Permanent (d) Mobile 4. The typical value of fill factor is in the range of -(a) 0.5 - 0.05-(b) 0.5 -0.083(c) 0.5 - 0.06(d) None of these 5. The cladding material of HPSIR Fiber is (a) Doped Silica (b) Plastic (c) Glass (d) Polymer 6. In plastic fiber both core and cladding are made from-(a) Silica (v) Plastic (c) Glass (d) Polymer 7. In external CVD, rate of deposition is (a) 1 to 2 gm/sec (b) 1 to 2 gm/min (c) 0.1 to 0.2 gm/min (d) 1 to 2 milligm/min 8. The useful materials for outer jacket of fiber cable are -(a) Polyvinyl chloride (b) Polyethylene (c) Polyethane (d) All of above 9. Optical fiber are made from-(a) Silica glass (b) Plastic (c) Rubber (d) both a & b 10. The output power of solar cell is a product of a) Current and resistance b) Current and charge c) Voltage and charge

d) Current and voltage