SUBJECT CODE NO:- 2002 FACULTY OF SCIENCE & TECHNOLOGY B.Sc. F.Y (Sem-I)

Examination June / July 2022 Chemistry Paper-II

(Organic Chemistry)

[Time: 1:53 Hours] [Max. Marks:50]

Please check whether you have got the right question paper.

N.B

- 1) Attempt all questions.
- 2) Use blue or black pen only.

Q.1 a)

i) Explain Inductive effect with examples. 5 M

ii) Differentiate electrophiles and nucleophiles with example. 5M

b) Assign E – Z nomenclature to the following organic compounds

10 M

$$\frac{Br}{h} = \frac{C}{F}$$

ii)

iii)

iv)

OR

a)

i) Describe charge transfer spectra.

5 M

ii) Explain any two types of organic reactions with examples.

5 M

b) Assign R and S nomenclature to the following

10 M

i)

ii)

iii)

iv)

Q.2 a)

i) Explain corey – house reaction of preparation of alkanes.

5 M

ii) Discuss saytzeff's rule with example.

5 M

b)

i) Explain Nitration reaction with mechanism of benzene.

5 M

ii) Give any two methods of preparation of any halides.

5 M

OR

20 M

Write a note on (any four)

- 1) Chlorination of alkanes.
- 2) Addition of HBr to alkene with mechanism.
- 3) Fridel craft's alkylation.
- 4) Any two method of preparation of carbon tetrachloride.
- 5) Structure and stability of carbonium ion.
- 6) Markownikoff's rule with examples.

Q.3 Choose and write the correct answer of the following

10 M

- 1) In stable organic compounds, carbon will always form
 - a) 2 bonds
 - b) 3 bonds
 - c) 4 bonds
 - d) 5 bonds

- 2) Which alkyl free radical is most stable?
 - a) Methyl
 - b) Primary
 - c) Secondary
 - d) Tertiary
- 3) Which of the following is not a nucleophile?
 - a) NH₃
 - b) $HSO_{\overline{3}}$
 - c) Alcl₃
 - d) $H\bar{O}$
- 4) Optical isomers that are mirror image are called
 - a) Tautomers
 - b) Diastereomers
 - c) Enantiomers
 - d) Metamers
- 5) Which of the following compounds will show geometrical isomerism
 - a) $CH_2 = CHC1$
 - b) CH₃-C=CH.CH₃
 - c) ClCH = CHBr
 - d) $Cl_2C = CBr_2$
- 6) Which of the following is a trihalogen derivative of alkane
 - a) Carbon tetrachloride
 - b) Methyl chloride
 - c) Chloroform
 - d) Ethyl chloride
- 7) The carbon atoms involved in the double bond of an alkene are
 - a) sp hybridized
 - b) sp² hybridized
 - c) sp³ hybridized
 - d) none of these
- 8) 2. Butene reacts with HBr to give
 - a) 1 Bromobutane
 - b) 2,3 Dibromobutane
 - c) 2 Bromobutane
 - d) 2,2 Dibromobutane
- 9) Which of the following compounds is not an aromatic compound?

- 10) Alkyl halides undergo
 - a) Electrophilic substitution reactions
 - b) Electrophilic addition reactions
 - c) Nucleophilic substitution reactions
 - d) Nucleophilic addition reactions

SUBJECT CODE NO:- 2008 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y (Sem-II)

EXAMINATION JUNE/JULY 2022

Chemistry Paper- V Inorganic Chemistry

[Time:	1:53 Ho	ours]	[Max.Marks:50]
N.B		Please check whether you have got the right question 1) Attempt all questions.	paper.
		2) Illustrate your answer with suitable labeled diagram	
Q.1	a)	Give the structure and bounding in xeF6	
	b)	Explain the formation of water molecule with the help of VSE OR	PR theory 10
		Discuss the different types of hybridization with examples	
	b)	Explain the formation of SF ₆	10 10
Q.2	a)	What is radioactivity? Discuss the properties of ∝- particles	10
	b)	Explain in detail redox titration with suitable example. OR	10
		Write short notes of any two of the following a) Calibration of Burette b) Electronic configuration of noble gases c) Hydrogen bonding d) Isotopes & isobar	20
Q.3		the correct option for each of the following The atomic number of helium atom is a) 2 b) 1	10
		c) 10 5	
	2)	The electronic configuration of noble gases is a) ns ² np ⁶ b) np ⁶ c) ns ² d) d ⁽ⁿ⁻¹⁾ ns ²	
	2 6 3)	The hybridized state of xeF ₄ is	
		a) Sp c) Sp ³ b) Sp ² d) Sp ³ d ²	
	4)	KMnO ₄ act asagent a) Oxidizing b) Reduction of the control of the contro	•
		The chief the control of the control	or these
	5)	The bond order of CO is	
17 P3		a) Zero b) One	
	200	c) Two d) Three	

6) VSEPR theory was proposed	by
a) Haitler & London	b) Pauling & slater
c) Gillespie & Nyholm	d) Sidwick & Powell
7) The bond which is formed by	the transfer of electron from one atom to other is called
a) Covalent	b) Ionic
c) Coordinate	d) Hydrogen
8)indicator is used in aci	d base titration
a) Ferroin	b) KMnO ₄
c) Methylene blue	d) Phenolpthalien
9) EDTA isligand.	
a) Monodentate	b) Bidentate
c) Tridentate	d) Hexadentate
10) The shape of CIF ₃ molecule is	
a) Triangular planar	b) T-shaped
c) V shaped	2 C S A S C S A S C S C S C S C S C S C S

SUBJECT CODE NO: - 2007 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y (Sem-II)

EXAMINATION JUNE/JULY 2022

Chemistry Paper-IV (Physical Chemistry)

[Time	e: 1:53 Hours]	[Max	.Marks:50
N.B	Please check whether you have 1) Attempt all questions. 2) Illustrate your answer with suitable please check whether you have 1.	\$\$\$\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
Q.1	Derive Kinetic gas equation Deduce Boyle's and OR		20
	Discuss in detail laws of crystallography. Differe solids.	ntiate between amorphous and crystalline	
Q.2	Derive integrated rate equation for second order recharacteristics of catalyst		20
	OR	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	
	Write short notes on any four a) Calculate distance between two points lying i) (5,2) and (3,2) ii) (2,7) and (-4,3) b) Using logarithm calculate i) 226 ×119 ii) 426 ÷109 c) Differentiate between solid and liquid. d) Nematic and cholesteryl liquid crystal e) Application of colloids f) Gel and its classification	ng on the straight line	
Q.3 A	Multiple choice questions	<i>y</i>	10
A.S.	1) The average kinetic energy of molecule is	directly proportional to	
18 18 18 18 18 18 18 18 18 18 18 18 18 1	a) Temperature	b) Pressure	
	c) Volume	d) Absolute temperature	
	2) $V\alpha \frac{1}{p}$ islaw		
	a) Boyle's	b) Charles Law	
	c) Avogadro's law	d) None of these	
	3) $K_o = x/t$ representsorder reac		
the by	a) Zero	b) First	
	c) Second	d) Pseudo	
7.67 CY	(4) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		

4)	The rate of i	reaction increases with	01 concen	uation V
	a) Inc	rease	b)	Decreases
	c) Bot	th a & b	d)	None of these
5)	Thread like	liquid crystals are called		
	a) Nei	matic	(a) (b)	Cholesteryl
	c) Sm	ectic	d)	None of these
6)	The example	e of emulsion is		
	a) Pai	nt	(b)	Smoke
	c) Mil	lk	d)	Curd
7)	Amorphous	solids are		
	a) Isot	tropic	b)	Anisotropic
	c) Mo	onotropic	d)	None of these
8)	HF is a good	d example ofbond		
	a) Co-	ordinate	(b)	Hydrogen
	c) Cov	valent	d)	None of these
9)	Log of 200-			26 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	a) 3.00		(b)	2.00
	c) 1.0		d)	None of these
10) The slope of	f intercept of the line 2y=-yx	x+2 is	
	a) (1,-		b)	(2,1)
	62		N. C. C. C. A.	(1.2)

SUBJECT CODE NO:- 2001 FACULTY OF SCIENCE AND TECHNOOGY B.Sc. F.Y Sem. I EXAMINATION JUNE / JULY 2022 Chemistry Paper-I(Inorganic Chemistry)

[Time: 1:53 Hours] [Max. Marks:50] Please check whether you have got the right question paper. N.B 1. Attempt all the questions. 2. All questions carry equal marks. 3. Illustrate your answer with suitable labeled diagram. a. What are quantum number? Explain principle quantum number and Arimuthal quantum 10 Q.1 number. b. What is Ionisation potential? Explain it's trend in periodic table. 10 OR c. Define electronic configuration? Explain electronic configuration of alkali and alkaline earth 10 metal elements? d. What are interhalogen compounds? Explain in detail Ax_3 and Ax_7 type of pnterhalogen 10 compounds. Q.2 a. State and explain Heisenberg's uncertainty principle and hund's rule of maximum 10 multiplicity Explain why size of anion is bigger than it's parent atom 10 b. i. b. ii. Define electronegativity and explain it's trend in periods in periodic table. OR Write notes on any four of the following 20 a. Solvation tendercy of 'S' block elements. b. Hydrides of group 13th elements c. Diagonal relationship between boron and silicon. d. Oxidation state of carbon family e. Bohr's atomic theory f. Oxides of Nitrogen and phosphorous Attempt the following 10 1. Magnetic quantum number describe--a. Shape of orbital b. Spin of electron c. Size of orbital d. Orientation of suborbitals 2. The element having largest atomic size----a. Na b. Cs c. Rb d. Br

3.	In Bun	sen flame beryllium showscolour
	a.	Crimson red
	b.	Violet
	c.	Golden yellow
	d.	None of these
4.	The D	orbital which does not have four lober is
	a.	
	b.	dz^2
		dyz
		dxy
5.	Amon	g the following the strongest base is
		NH ₃
	b.	PH_3
		AsH_3
		SbH ₃
6.		ture of CO_2 is
		Amphoteric
		Basic
		Natural
_		Acidic
7.	-	of D- orbital is
		Double dumb bell
		Umb bell
		Spherical
0		None of these
8.		es are the hydrides of
	a.	
	e.	00 10 10 10 10 10 10 10 10 10 10 10 10 1
ο.	~ ~ ~ ~ ~ ~	Se
9.5	V > 0-1 V	nportanant element in biological process 'sodium pump' is Ca
	X	KOOS SO
A. E.	m'	$\mathbf{M}_{\mathbf{g}}$
	1 V = / ~/)	Be
10	Alumi	
10,	9.5 V V V	Al_3N_3
200		$Alcl_3$
3,70		$Al(oH)_3$
3		Al_2O_3
6	57.57.49°	4112.03

SUBJECT CODE NO: - 2012 FACULTY OF SCIENCE & TECHNOLOGY B.Sc. S.Y (Sem-IV) EXAMINATION JUNE/JULY 2022 Chemistry Paper-XI (Physical Chemistry-II)

[Time	: 1:53 H	Iours]	[Max.Mar	ks:50
		Please check whether you have got the	right question paper.	369
N.B.		i) Attempt all questions.		969)
		ii) Figures to the right indicate for	ill marks.	
		iii) Use of non-programmable ca	lculator is allowed.	
Q.1	a)	What is phase rule? Explain the terms involved i	nito	10
	b)	Explain Arrhenius theory of electrolytic dissocia OR	tion and give its limitations.	10
	c)	Explain effect of dilution on specific and equiva conductance when 0.5N solution of a salt is plac cm apart and area of cross section 4.0 cm ² has a	ed between two platinum electrodes 2.0	10
	d)	Describe construction and working of standard h		10
Q.2	a)	Discuss phenol-water and nicotine-water system		10
	b)		() () () () () () () () () ()	10
	Write	short notes on (any four)		20
		Advantages of conductometric titrations.	25	
		Ostwald's dilution law	5), ⁴ 5	
		Raoult's law and Henry's law	8	
		Desilverisation of lead		
	227.4	Electrochemical Series		
q		Conventional representation of electro-chemical	cells.	
Q.3	Choos	se and write the correct answer of the following		10
	007	The phase rule was first discovered by		
, 60 C	CO CO	(a) Gibbs (b) Nernst	•	
		(c) Arrhenius (d) Ostwald		
	2.	Number of phases present in water system are		
		(a) 1 (b) 2		
3000		(c) 3 (d) 0		
SON B	3.	V 20 35 2 2 3 3 7 25 7 2 3		
800	8 9 9 B	(a) $F=4-P$ (b) $F=3-P$		

		_	_	_
1	(c)	. ⊩⊹	-′).	_ 12
١	\sim	1 -	-2	_1

(d)
$$F=1-P$$

- 4. The eutectic temperature of silver-lead system is
 - (a) 300°C

(b) 290°C

(c) 305°C

- (d) 303°C
- 5. For strong electrolytes, the degree of dissociation is
 - a) nearly equal to one
 - b) nearly equal to two
 - c) nearly equal to zero
 - d) nearly equal to infinity
- 6. In Hittorf's method for determination of transport number we make use of a
 - (a) H-tube

(b) U-tube

(c) V-tube

- (d) L-tube
- 7. Kohlrausch's law can be expressed as

(a)
$$\lambda_{\alpha} = \lambda_{a} - \lambda_{c}$$

(c)
$$\lambda_{\alpha} = \lambda_{a} + \lambda_{c}$$

(b)
$$\lambda_{\alpha} = \lambda_{c} - \lambda_{a}$$

(d) $\lambda_{\alpha} = \lambda_{a} \times \lambda_{c}$

- 8. The pH of 0.01M KOH Solution will be
 - (a) 1

(b) 2

(c) 14

- (d) 12
- 9. The cell which converts electrical energy into chemical energy is
 - (a) electrolytic cell

(b) electrochemical cell

(c) both a & b

- (d) none of these
- 10. The Henderson equation for an acidic buffer is

a)
$$pH=pKa - log \frac{[Salt]}{[acid]}$$

b)
$$pH=pKa + log \frac{[Salt]}{[acid]}$$

c)
$$pH=pKa - log \frac{[acid]}{[Salt]}$$

d)
$$pOH=pKa + log \frac{[Salt]}{[acid]}$$

SUBJECT CODE NO: - 2011 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. S.Y (Sem-IV) EXAMINATION JUNE/JULY 2022 Chemistry Paper-X (Inorganic Chemistry)

[Time: 0	Time: 01:53 Hours] [Max.Mark			s: 50
N.B		Please check whether you have g 1) All questions are compulsory		50
Q.1		What are transition elements? Give the e Explain Arrhenius concept of acids and l limitations.	lectronic configuration of first transition series bases with suitable example & discuss its	. 10 10
			ORTAL	
		What are Actinides? Explain oxidation s What is isomerism? Discuss any two typ		10 10
Q.2	a)	Discuss in detail valence bond theory wi	th its limitations and applications.	10
		Explain ammonolysis and redox reaction		10
	c)	 Write short notes on (any four) 1) General features of d-block elements 2) Lanthanide contraction 3) Acid-base reaction in liquid SO₂ 4) Postulates of Werner's theory 5) Bronsted-Lawry concept of acids and 6) Types of ligands 	bases	20
Q.3	Multip	le Choice Questions		10
		The oxidation states of Ni in $[Ni(Co)_4]$ is a) 0 b) +1 c) +2 d) +3	S	
	2)	Which of the following is a Lewis acid? a) NH_3 b) NCl_3 c) $AlCl_3$ d) PCl_3		
	(a)	Lanthanides are called 5f series elements 3d series elements	b) 4f series elementsd) 4d series elements	

- 4) Which of the following is non protic solvent
 - a) H_2O
- b) *CH*₃*COOH*
- c) H_2SO_4
- d) SO_2
- 5) General electronic configuration of first transition series
- a) $3d^{1-10} 4s^2$

b) $4d^{1-10}5s^2$

c) $3d^{1-5} 4s^2$

d) $4f^{1-14}6s^2$

- 6) Ethylene diamine is
- a) Monodentate ligand

b) Tridentate ligand

c) Bidentate ligand

- d) Hexadentate ligand
- 7) According to Werner's theory, primary valency is
- a) Ionisable valency

b) Non ionisable valency

c) Variable valency

- d) Additive valency
- 8) The conjugate acid of NH_2^- is
- a) NH_3 b) NH_2OH c) NH_4^+
- d) N_2H_4
- 9) Which of the following element shows +1 oxidation state
 - a) Zn b) Mn c) Cr d) V

- 10) The hybridization of $[FeF_6]^{3-}$ is

 - a) dsp^2 b) sp^3 c) d^2sp^3 d) sp^3d^2

SUBJECT CODE NO:- 2005 FACULTY OF SCIENCE AND TECHNOOGY B.Sc. S.Y Sem. III EXAMINATION JUNE/JULY 2022 Chemistry Paper-VII (Organic Chemistry)

[11me: 1 Hours]		[Max. Marks: 50
Hours	Please check whether you have got the right question paper.	2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
N.B	1. Attempt all questions.	
1,12	2. Use blue or black pen only.	
	8/4/V/V/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/	
- /	Explain Reimer-Tieman reaction with suitable mechanism	06
2.	Give any two methods of preparation of ethylene glycol.	04
B) 1.	Explain Hell-volhard zeilinstcy reaction with mechanism.	06
	Pina col-pina colone rearrangement, Explain.	04
C) E	xplain with Mechanism of Baeyervilleger oxidation of cyclie ketone.	10
D)H	ow will you prepare acetic acid from	10
	1) CO ₂	
	2) Nitrile	
	3) Ester	
	4) Amide	
	5) Acid Chloride	
Q.2A)E	xplain the reduction of Nitrobenzene in acidic, basic and natural media.	10
B)E	xplain with mechanism Hoffmannbromide reaction.	10
2000 D	OR	
		20
	rite short note on (any four)	20
	 Intermolecular fries rearrangement Acidic Nature of alcohols 	
	3) Reaction of amine with Nitrous acid	
50200	4) Decorboxylation of carboxylic acid	
6,00,0	5) Ndol condensation	
8 2 8 S	6) Mannish reaction	
26,00	o) mainish reaction	

10

Q.3 Choose and Write the correct answer of the following questions. (answer all questions)

1) Which of the following having maximum Pka value

a.
$$CH_3 - CH_2 - CH_2 - CH_2 - OH$$

b.
$$CH_3 - CH_2 - CH_2 - OH$$

c.
$$H_3C-CH_2-CH-CH_3$$
 OH

CH₃
d.
$$H_3C - CH_2 - C - CH_3$$
OH

- 2) The product of fries reaction is _____
 - a. O- Hydroxy
 - c. P- Hydroxy acid

- b. O-Hydroxy acid
- d. M- Hydroxy acid
- 3) The carbon atom of carbonyl compound is
 - a. $SP^2 Hybridized$
 - c. SP Hybridized

- b. SP^3 Hybridized
- d. $SP^3d Hybridized$
- 4) Which of the following is the strongest acid.
 - a. Benzoic acid
 - c. P-Nitro benzoic acid

- b. P-Methoxy benzoic acid
- d. P- methyl benzoic acid
- 5) The carboxylic acid that under goes decarboxylation most readily under mild conditions is
 - a. Acetic acid
 - c. $\beta keto$ carboxyylic acid
- b. Benzoic acid
- d. All of these
- 6) Claisen rearrangement is carried out in presence of _____
 - a. Base
 - c. Heat

- b. Acid
- d. All of above
- 7) β amino carbonyl compound is the product of _____
 - a. Mannich reaction

- b. Benzoin condensation
- c. Knoerengel condensation
- d. Gatlerman reaction
- 8) Which of the following doesnot given HVZ reaction?
 - a. Acetic acidc. Benzoic acid

- b. Phenyl acetic acid
- d. Butyric acid
- 9) Vicinal diols can be prepared by
 - a. Oxidation of alkanes with O_5O_4
- b. Oxidation of alkene with O_5O_4
- c. Reduction of alkanes with O_5O_4
- d. Reduction of alkenes with O_5O_4
- 10) Which of the following does not show aldol condensation?
 - a. Mono -chloro acetaldehyde
- b. Tri -chloro acetaldehyde

c. Acetal dehyde

d. Acetone

SUBJECT CODE NO:- 2006 FACULTY OF SCIENCE & TECHNOLOGY B.Sc. S.Y Sem-III EXAMINATION JUNE / JULY 2022 Chemistry Paper-VIII (Physical Chemistry)

[Time	Time: 1 : 53 Hours]		
Please check whether you have got the right question paper. N.B 1) Attempt all questions. 2) Illustrate year answer with suitable diagram			S. C.
Q.1	a)	What is Gibb's energy function? Give its variation with respect to temperature and pressure.	10
	b)	Define the terms open, closed, isolated, homogeneous and Heterogeneous systems. When 2 moles of an ideal gas expands isothermally and reversibly at constant temperature 300 k from 10dm^3 to 20 dm^3 . calculate $\triangle E$, q and W . (Given: $R = 8.314 \text{ JK}^{-1} \text{ mol.}^{-1}$	10 n
		OR OR	
	c)	Write any five statements of second law of thermodynamics. Calculate the efficiency and amount of heat supplied to carnot cycle operating between temperatures $300k$ and $423k$, if maximum work obtained is 575 J.	10
	d)	State and explain Hess's law of heat summation. Give its applications.	10
Q.2	a)	Define entropy. Explain how entropy can be used as criteria of spontaneity and equilibrium.	10
	b)	Define Clapeyron – Clausius equation. Give its applications.	10
A STORY		OR	
		 Write short notes on (any four) a) Reversible and irreversible processes. b) First law of thermodynamics. c) Helmholtz free energy function. d) Carnot theorem. e) Reaction isochore. f) Le – chatelier's principle. 	20
Q.3		Multiple choice questions. 1. Which out of the following is not an intensire property? a) Viscocity	10

		Density
		Energy
	d)	Surface tension
2.	An	isochoric process takes place at constant
		Volume
	b)	Pressure
	c)	Temperature
		Heat
3	Th	e amount of heat required to raise the temperature of one mole of the substance by 1k
٥.		called
		Molar heat
	-	Molar capacity
		Heat capacity Heat capacity
		Molar heat capacity
	u)	World fleat capacity
4.		ange in enthalpy in reversible isothermal expansion of an ideal gas is
		Zero
		One
	-	Less than zero
	d)	Greater than zero
5.	Wł	nich is the correct unit for entropy.
		KJ mol
	b)	Cal deg-1 mol-1
	c)	JK-T mol
	d)	Cal deg ⁻¹ mol,
- 2	260	
6.		e efficiency of heat engine operating 200K to 100K is
0,5	A/Y (
500	d)	
7.	In	an irreversible process the entropy is
5.4	V V	Increases
20	b)	Decreases
300	c)	Zero
	d)	None of these
80	Th	e work function (A) is defined as
	~ _ ' '	A = E + TS
		A = H + TS
100 100	m - 6	A = E - TS
2		$\Delta = H = TS$

- 9. $\frac{dp}{dt} = \frac{\triangle H_v}{T(v_2 v_1)} \text{ is a } \dots$
 - a) Vant hoff isotherm
 - b) Gibbs equation
 - c) Clapeyron equation
 - d) Helmoholtz equation
- 10. According to Le-chatelier's principle. Increase in pressure shifts the equilibrium towards the direction in which the
 - a) No. of moles increases
 - b) No. of moles decreases
 - c) Equal no. of moles
 - d) None of these

SUBJECT CODE NO:-2009

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. Third Year Sixth Semester EXAMINATION JUNE/JULY2022

Chemistry Paper –XVI (Inorganic Chemistry)

[Time	. 1 53	Hours] (Inorganic Chemistry)	Marks:50
Linne	. 1.33		viai ks. S
		Please check whether you have got the right question paper.	
N.B		i) Attempt all questions	NA SA
		ii) Draw neat and labeled diagrams wherever necessary.	5.57.0
			9 D.S.
Q.1	a)	Discuss the splitting of d- orbitals in tetrahedral metal complexes.	10
	b)	Give two methods of preparation, properties and uses of organotitanium compounds. OR	10
	c)	Discuss the biological importance of ca++ and Mg++ ions.	10
		What is chromatography? Discuss the technique of ascending paper chromatography.	10
Q.2	a)	What are metal carbonyls? Discuss the nature of bonding in metal carbonyls.	10
	b)	Explain i) Types of Electronic transitions ii) Spin selection rule	10
		OR SECTION	
	c)	Write short notes (any four) 1) $\Delta t = 4/9 \Delta_o$ explain it	20
		 2) Applications of Thin layer chromatography 3) Biological importance of K⁺ ions 4) Spectra chemical series 	
	5	4) Spectro chemical series5) Metal ethylenic complexes	
,		6) Orgel energy level diagram of d' system	
Q.3	Multir	ble choice questions	10
600		The strong field ligand is	10
		a) F^- b) Cl^- c) I^- d) CN^-	
	2)	C.F.S.E of d^3 system in strong field octahedral complex is a) $+6$ Dq b) -4 Dq c) -12 Dq d) $+12$ Dq	
	3)	The ground term symbol for d^6 system is a) 5_D b) 6_S c) 4_F d) 2D	
	4)	laporte allowed transition is a) $\Delta l = 0$ b) $\Delta l = \pm 1$ c) $\Delta s = 0$ d) $\Delta s = 1$	

5) The central metal ion present in chlorophyll is b) Mg^{++} c) Ni^{++} d) Cu^{++} a2 *Fe*++

6) The role of hemoglobin in bio system is

- a) Transport of O₂ b) Store O₂ c) store CO₂ d) None of these
- 7) Paper chromatography is an example of
 - a) Adsorption chromatography
 - b) Partition chromatography
 - c) Gas chromatography
 - d) All of these
- 8) In descending paper chromatography the solvent flows in
 - a) Upward direction b) Downward direction c) circular direction d) None of these
- 9) IUPAC name of –(CH₃)₂ Zn is
 - a) Methyl zinc b) diethyl zinc c) dimethyl zinc d) ethyl methyl zinc
- 10) For polymerizing ethylene to form polythene by
- c) Organo Zn compounds d) none of these

SUBJECT CODE NO: - 2010 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. T.Y (Sem-VI) EXAMINATION JUNE/JULY 2022 Chemistry Paper –XVII (Organic Chemistry)

[Time: 1:53 H	lours]	[Max.Marks:50]
N.B	Please check whether you have got the right question paper. 1) Attempt all questions. 2) Figures to the right indicate full marks.	
-	What are heterocyclic compounds? Give the skraup synthesis of Quinoline. Give conversion of glucose into fructose. Fructose into glucose. OR	10 10
	What are carbohydrates? Explain mutarotation with mechanism. Explain with mechanism the nitration and sulphonation of pyrrole.	10 10
Q.2	a) What are dyes? Describe the synthesis of congo red and malachite green.b) Explain addition and condensation polymers with suitable examples.	10 10
	c) Write short notes on (any four) i) Fisher indole synthesis ii) Lactose iii) Synthesis of polystyrene iv) Properties of Ideal drugs v) Synthesis of polyvinyl chloride vi) Synthesis of sulphaguanidine	20
-	ple choice questions: Milk sugar is chemically known as	10
	a) Glucose b) Fructose c) Lactose d) Maltose	
	a) Lactose b) Sucrose c) Fructose d) Glucose	
	The carbon atoms in pyrrole are a) Sp ³ hybridized b) Sp ² hybridized c) Sp hybridized d) None of these	
4	a) Quinoline b) Isoquinoline c) Pyridine d) Pyrrole	

3)	w nat is	used to a free radical polymerization?		
	a)	Benzyl chloride	b)	Styrene
	c)	Benzoyl peroxide	d)	Phthalic acid
6)	The exa	mple of condensation polymer is	· (100)	
		Nylon -66	(b)	Nylon - 6
		PVC		Polyethylene
7)	Phenolp	ohthalein shows pink colour in	02 40 00 50 00 00 00	
	a)	Acid solution	(b)	Alkali solution
	c)	Phenolic solution	d)	Neutral solution
8)	Paraceta	amol drug is used as		
		Analgesic	b)	Hyphotic
	c)	Sedative		None of above
9)	A chem	ical substance which reduces temperatur	re of boo	dy in fever is
		Anti-inflammatory		Pyretic
	c)	Antipyretic	d)	Antiseptic
10)) Pyrrole	couples with benzene diazonium chloric	le to giv	E-2-2-2-2
	-	2-phenylazo pyrrole	7 770, (2 7 - K	3- phenylazo pyrrole
		2-phenyl pyrrole	D WY WILL	2-amino pyrrole

SUBJECT CODE NO:- 2003 FACULTY OF SCIENCE AND TECHNOOGY B.Sc. T.Y Sem. V EXAMINATION JUNE / JULY 2022 Chemistry Paper – XIII (Physical Chemistry)

[Time: 1:53 Hours] [Max. Marks:50] Please check whether you have got the right question paper. N.B Attempt all questions. i. ii. Figures to the right indicate full marks. Q.1 a) State the postulates of Bohr's theory. Give its defects. 10 b) Discuss the rotational spectra of rigid diatomic molecule. Calculate the moment of inertia 10 of HCL molecule it its bond length is $1.27 A^0$ (Atomic mass of H=1.008 Atomic mass of cl = 35.5 $N = 6.023 \times 10^{23}$ OR c) Explain radiative transitions with the help of Jablonski diagram. When the substance was 10 exposed to light 0.002 moles of it reacted in 30 minutes. Calculate quantum yield if it absorbs 2.3×10^6 photons per second. d) Explain diamagnetic and paramagnetic substances. How magnetic property is measured by 10 Guoy balance method? Q.2 a) What is rigid rotator? Derive an expression for energy of rigid rotator. 10 b) State the explain Heisenberg's uncertainty principle. Calculate the uncertainty in velocity 10 of an electron if uncertainty in position is $0.1 A^0$. (mass of $e = 9.1 \times 10^{-31} \, kg$, $h = 6.626 \times 10^{-34} \text{ Jsec}$ OR 20 Write short notes on any four of the following: a) Photoelectric effect b) Electromagnetic radiation c) Photosensitized reactions d) Application of dipole moment in structure determination

10

e)	Physical vapor deposition method				
f)	Synthesis of nanomaterial by using plant extr	act			
Select	and write correct answer of the following mul	tiple	choice questions		
	1) In Compton effect the change in wavelength is given by				
ŕ	a) $\Delta \lambda = \frac{2h}{mc} \sin \theta$	_	$\Delta \lambda = \frac{2h}{mc} \sin^2 \theta$		
	c) $\Delta \lambda = \frac{2h}{mc} \cos \theta$	d)	$\Delta \lambda = \frac{2h}{mc} \cos^2 \theta$		
•		N.F.			
2)	De Broglie's wavelength is given by	<u> </u>			
	a) $\lambda = \frac{h}{m\theta}$	b)	$\lambda = \frac{h^2}{m\theta}$ $\lambda = \frac{h^2}{m^2 \cdot \theta^2}$		
	c) $\lambda = \frac{h}{m\theta^2}$				
	c) $\lambda = \frac{1}{m\vartheta^2}$	a)	$\lambda \equiv \frac{1}{m^2 \vartheta^2}$		
3)	In which region rotational energy changes are	actu	dies		
3)	a) Ultraviolet	. /\ / _	Visible		
	c) Microwave	じとい	Infrared		
	c) wherewave	(A)	Annaeu Carlon		
4)	In spectrometer the radiation sourse in UV re	gion	is		
	a) Tungsten lamp		Hydrogen discharge lamp		
	c) Heating filament	(d)	None of these		
5)	Photochemical reactions are				
3)	a) Selective		Non selective		
	c) Both a and b	1 (0)	None of these		
	c) Both a and b		None of trese		
6)	Rate of photochemical reactions depend upor	1	+ + 		
ŕ	a) Intensity of light		Frequency of light		
	c) Amplitude of light	, / A \	Velocity of light		
		5			
7)	Racemic mixture is	V. Z.	3 ³		
	a) Leavo rotatory	b)	Dextro rotatory		
VINE S	c) Optically inactive	d)	None of these		
8)	Dipole moment in betronuclear diatomic mol	ecul	e arises due to difference in		
1 2 2)	a) Ionization potential		Electro negativity		
3000	c) Atomic size		None of these		
	C) 7 tollie size	u)	Trone of these		
9)	1 nanometer is equal to				
	a) $0.10 A^0$	b)	1 millimicron		
	c) 0.1 micro centimeter	d)	All of these		
7.40) Which of the following approach is used in h	ioh 4	energy hall milling method		
	a) Top to bottom	_	Bottom to top		
3000	c) Horizontal	,	None of these		
47.90	C) FIORIZORAL	u)	TONE OF HICSE		

Q.3

SUBJECT CODE NO:- 2004 FACULTY OF SCIENCE AND TECHNOOGY B.Sc. T.Y Sem. V EXAMINATION JUNE / JULY 2022 Chemistry Paper –XIV (Organic Chemistry)

[Time: 1:53 Hours]		
N.B	Please check whether you have got the right question paper. a. All questions are compulsory	O.
Q.1	A. A compound having molecular formula C_9H_{11} Br showed the following signals in PMR	10
V.1	data.	10
	$\delta 2.25 (M, 2H), \delta 2.75 (t, 2H), \delta 3.38(t, 2H), \delta 7.22 (s, 5H)$	
	Assign the structure of the compound.	
	B. How will you synthesize the following from ethyl acetoacetate	10
	1. Succinic acid	
	2. N-Butyric acid	
	3. Crotonic acid	
	A. Predict the following compounds on the basis of ¹ H NMR spectroscopy.	10
	1. Ethyl alcohol	
	2. Acetaldehyde.	10
	B. Discuss the manufacture of soyaben oil by solvent extraction method.	10
Q.2	A. Discuss the synthesis of glycine, propionic acid and barbuturic acid from diethyl malonate.	10
	B. How will you prepare the following from methyl magnesium bromide.	10
	1. t-butyl alcohol	
	2. Propane	
	3. Acetic acid.	
20		
12/26 68/	A. Write a short notes on (any four)	
	1. ¹ H NMR spectrum of toluene	20
6,6	2. Coupling constant	
	3. Organizine compound	
9000	4. Keto-enol tautomerism	
(3. Kg)	5. Claisen condensation with mechanism	
03	6. Iodine value.	10
U.S	Chose the correct option for the following.	10
4	1. Ethyl bromide molecule shows a. Two types of PMR peaks.	
XXX	h. One types of PMP peaks.	

	c. Both 'a' and 'b'
	d. None of these
2.	The proton (s) with similar environment known as
	a. Equatorial protons
	b. Equivalent protons
	c. Axial protons
	d. None of these
3.	When external magnetic field is opposed by induced magnetic field this effect is known a
	a. Deshielding effect
	b. Shielding effect
	c. Mesomeric effect
	d. Inductive effect
1	Chemical shift of promatic proton is
т.	a. $\delta 3.7 \text{ to } 4.3$
	 a. 63.7 to 4.3 b. δ3 to 4
	c. δ1 to 3.6
	d. δ6 to 9
5	
٦.	When methyl magnesium bromide on the reaction with sylphur givesa. Ethanethiol
	b. Ethylalcohol
	c. Diethyl thioether d. None of these
6	V/V 45 VAVA VAVA 64 CE SI VIVI CE SOLO (20 VE) VO VO VO VO VO
0.	The product formed during Reformatsky reaction is
	a. $\alpha - hydroxy$ ester
	b. β – hydroxy esterc. Both 'a' and 'b'
	70, C), US 70, CA 70, A, US 77, VA 74, US 77, VA 72, VA 72, VA 42, VA 72, VA 72, VA 72, VA 73, VA 74, VA 74, VA 74, VA 75, VA 75
7	d. None of these
1.	Acetoacetic ester on heating with urea gives
	a. 4- methyl uracil
	b. Uric acid
SC.	c. Acetone
0	d. Benzophenone
0.	The acidity of active \alphahydroxy atom in ethyl acetoacetate is due toa. Mesomeric effect
	b. Resonance effect
	c. –I effect
500	d. +I effect
06	A '01, 45, 9, 3, 17, 18, 18, 48, 48, 48, 48, 48, 48, 48, 48, 48, 4
3	Oil on reaction with alcoholic KoH give
8	a. Glycerol and soap
	b. Glycerol and fatty acid
	c. Ethanol and fatty acid d. None of these
100	
TU.	Detergent in made up of two groups they are
A.C.	a. Hydrophobic and hydrobiotic
BT.	b. Hydrophobic and hydrophilic

- c. Hydrophobic and hydrophilicd. None of these.